

4R Nutrient Stewardship A Flexible Approach to Reducing GHG Emissions from Nitrogen Fertilizers

APAS April 2, 2019 Saskatoon

Dan Heaney PhD, CCA 4R, PAg

Right Source @ Right Rate, Right Time & Right Place

» Right Source - What N sources reduce emissions?

» Right Rate - How important is rate in determining emissions? RIGHT N P K SOURCE

» Right Time – Does time of application affect emissions?

» Right Place – Does placement affect emissions?

» Can I measure and monetize on my farm?

We're Growing Sustainability ®

FERTILIZER CANADA ELEARNING

Getting started with Fertilizer Canada's eLearning platform is simple. The only requirement is a computer with internet access. Registration on the site only takes a minute and users will have immediate access to the training module. Students learn at their own pace and on their own schedule.

- 4R Essentials
- 4R Nutrient Stewardship Training (Parts 1-3)
- 4R GHG Reduction
- NERP
- 4R Saskatchewan

https://fertilizercanada.ca/nutrientstewardship/elearning/4r-nutrient-stewardship/

FAO CLIMATE-SMART AGRICULTURE

 > HIGH PRODUCTION > INTENSIFIED > RESILIENT > SUSTAINABLE > LOW EMISSION 	FAO Chutrient stewardship		
	HIGH PRODUCTION	4R SUPPORTS INCREASED PRODUCTION THROUGH BETTER MANAGEMENT	
	INTENSIFIED	4R ENCOURAGES HIGHER INTENSITY ON EXISTING FARMLAND	
	RESILIENT	4R PROMOTES CONSERVATION AGRICULTURE	
	SUSTAINABLE	4R SUPPORTS ECONOMIC VIABILITY, REDUCED ENVIRONMENTAL IMPACT AND SOCIETIES NEED FOR FOOD SECURITY	
	LOW EMISSION	4R REDUCES EMISSIONS PER UNIT OF CROP PRODUCED	

Important Greenhouse Gases

Global Warming Potential 1 kg N₂O = 298 kg CO₂

Carbon Dioxide Equivalents or CO₂e

FERTILIZER CANADA FERTILISANTS CANADA

CANADIAN AGRICULTURE

FERTILIZER CANADA FERTILISANTS CANADA

Saskatchewan's GHG Emissions by Economic Sectors (2015)

Sask Total (2015) = 75.0 Mt CO₂e

Nitrous Oxide Emissions & Nitrogen Losses

Nitrous oxide emissions......

- account for only a small fraction of N loss.
- are highly variable in space and time.
- are difficult (impossible on farm) to measure.
- are generally non-economic in Saskatchewan.

Nitrogen losses.....

- contribute to indirect nitrous oxide emissions.
- are highly weather and landscape dependent.
- can be measured on farm.
- can have significant economic impact.

» What sources reduce nitrous oxide emissions?

» Are there any nutrient interactions (+ or -)?

» The other 4Rs – Right Rate, Right Time, Right Place?

We're Growing Sustainability ®

27

Source: Burton 2018

Source: Eagle et al. 2017

Nitrification Inhibitors

Ē

FERTILIZER CANADA FERTILISANTS CANADA

Nitrous Oxide Reductions

Source	Reduction	
Nitrification Inhibitors	35%	
Urease Inhibitor* + NI	25%	
Urease Inhibitor*	Highly Variable	
Polymer Coated Urea	10%	

Source: Burton 2018

Right Time

- Crop stage and timing of plant uptake.
- Dynamics of soil nutrient supply.
- Timing of nutrient mobility and loss.
- The logistics of on-farm field operations.

»Weather (moisture and temperature)

»Soil physical and chemical properties

»Best Management Practices

We're Growing Sustainability ®

»Spring flooding can cause losses of fall applied N and residual N by denitrification.

» Soils can lose
2 – 4 lbs N/acre/day
at 5°C.

» 15 - 30 lbs of NO₃-N/acre/week could be lost.

Picture source: Farmwest

We're Growing Sustainability ®

Right Time

BMP	ISO	GHG Reduction		
Delay fall application of N until the soil has cooled to below 10° C or the use of an inhibitor.	Early fall-application of unprotected N.	30%		
Switch to spring application.	Early fall-application of unprotected N.	20%		
Split Application.*	All N at or before seeding.	15%		
* With sub-surface placement or EEF source.				

Source: Burton (2018)

Ē

Time-Place Interaction and Crop Yield

We're Growing Sustainability ®

Fertilizer Placement

» Sub-surface banding improves N-use efficiency and reduces the risk of N loss.
» Depth > 5 cm are effective at reducing N₂O emissions.

We're Growing Sustainability ®

>> Source, Time, Place BMPs may allow for reduced rates.

>> Excess rates result in higher N_2O emissions and higher N losses.

- overwinter losses
- in-season losses
- residual post-harvest losses
- >> Resilient cropping systems mineralize more N.

>> Fertilizer N is more efficient under better moisture.

We're Growing Sustainability ®

39

Maximize Profit Not Yield

We're Growing Sustainability ®

40

N Rate and Nitrous Oxide Emissions

NERP

Nitrous Oxide Emission Reduction

$N \times F_1 \times F_2 \times \frac{44}{28} = N_2 O$

- N is nitrogen inputs from fertilizer, manure, crop residue.
- $F_{1\&2}$ are emission and/or partitioning factors
- 44/28 is the N to N_2O conversion factor

QUESTIONS?

